Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
2.
PLoS One ; 17(1): e0262473, 2022.
Article in English | MEDLINE | ID: covidwho-1627804

ABSTRACT

Several studies have reported the relationship of deforestation with increased incidence of infectious diseases, mainly due to the deregulation caused in these environments. The purpose of this study was to answer the following questions: a) is increased loss of vegetation related to dengue cases in the Brazilian Cerrado? b) how do different regions of the tropical savanna biome present distinct patterns for total dengue cases and vegetation loss? c) what is the projection of a future scenario of deforestation and an increased number of dengue cases in 2030? Thus, this study aimed to assess the relationship between loss of native vegetation in the Cerrado and dengue infection. In this paper, we quantify the entire deforested area and dengue infection cases from 2001 to 2019. For data analyses, we used Poisson generalized linear model, descriptive statistics, cluster analysis, non-parametric statistics, and autoregressive integrated moving average (ARIMA) models to predict loss of vegetation and fever dengue cases for the next decade. Cluster analysis revealed the formation of four clusters among the states. Our results showed significant increases in loss of native vegetation in all states, with the exception of Piauí. As for dengue cases, there were increases in the states of Minas Gerais, São Paulo, and Mato Grosso. Based on projections for 2030, Minas Gerais will register about 4,000 dengue cases per 100,000 inhabitants, São Paulo 750 dengue cases per 100,000 inhabitants, and Mato Grosso 500 dengue cases per 100,000 inhabitants. To reduce these projections, Brazil will need to control deforestation and implement public health, environmental and social policies, requiring a joint effort from all spheres of society.


Subject(s)
Conservation of Natural Resources/trends , Dengue/etiology , Brazil/epidemiology , Conservation of Natural Resources/statistics & numerical data , Dengue/epidemiology , Dengue Virus/pathogenicity , Ecosystem , Environment , Humans , Incidence
3.
Drug Discov Ther ; 15(3): 130-138, 2021.
Article in English | MEDLINE | ID: covidwho-1296656

ABSTRACT

Dengue is a life-threatening mosquito borne viral disease. We are still in the era of supportive treatment where morbidity and mortality are a major concern. Dengue infection in presence of other co-infections makes this scenario rather worse. Timely recognition and raising alarm to be intensive is the need of the hour for primary care physicians practicing in the community and indoors. This review provides a comprehensive knowledge about the recent trends of coinfection in dengue as well as their management consideration which will be particularly helpful for physicians practicing in rural and remote areas of India.


Subject(s)
Bacterial Infections/therapy , Coinfection/therapy , Dengue Virus , Malaria/therapy , Virus Diseases/therapy , Bacterial Infections/epidemiology , Coinfection/epidemiology , Dengue Virus/genetics , Dengue Virus/pathogenicity , Humans , Malaria/epidemiology , Reinfection , Serogroup , Virulence , Virus Diseases/epidemiology
4.
Western Pac Surveill Response J ; 12(1): 35-39, 2021.
Article in English | MEDLINE | ID: covidwho-1259712

ABSTRACT

The rainy season in the Philippines is from June to October; this is when the number of dengue cases typically increases. In 2020 during this time, the world was facing the threat of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Coronavirus disease 2019 (COVID-19) and dengue viral infections have similar presentations and laboratory findings, including fever and thrombocytopenia, and there have been reports of coinfection with SARS-CoV-2 and arthropod-borne virus. Here, we report a case of SARS-CoV-2-dengue virus coinfection in the Philippines in a female aged 62 years, whose early symptom was fever and who was positive for SARS-CoV-2 and positive for dengue. Early recognition of such coinfection is important so that proper measures can be taken in the management of the patient.


Subject(s)
COVID-19 Drug Treatment , COVID-19/diagnosis , Coinfection , Dengue/diagnosis , Dengue/drug therapy , COVID-19/epidemiology , Dengue/epidemiology , Dengue Virus/isolation & purification , Dengue Virus/pathogenicity , Early Diagnosis , Female , Humans , Middle Aged , Philippines/epidemiology , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Treatment Outcome
5.
Front Immunol ; 11: 575074, 2020.
Article in English | MEDLINE | ID: covidwho-1256374

ABSTRACT

Combined cellular and humoral host immune response determine the clinical course of a viral infection and effectiveness of vaccination, but currently the cellular immune response cannot be measured on simple blood samples. As functional activity of immune cells is determined by coordinated activity of signaling pathways, we developed mRNA-based JAK-STAT signaling pathway activity assays to quantitatively measure the cellular immune response on Affymetrix expression microarray data of various types of blood samples from virally infected patients (influenza, RSV, dengue, yellow fever, rotavirus) or vaccinated individuals, and to determine vaccine immunogenicity. JAK-STAT1/2 pathway activity was increased in blood samples of patients with viral, but not bacterial, infection and was higher in influenza compared to RSV-infected patients, reflecting known differences in immunogenicity. High JAK-STAT3 pathway activity was associated with more severe RSV infection. In contrast to inactivated influenza virus vaccine, live yellow fever vaccine did induce JAK-STAT1/2 pathway activity in blood samples, indicating superior immunogenicity. Normal (healthy) JAK-STAT1/2 pathway activity was established, enabling assay interpretation without the need for a reference sample. The JAK-STAT pathway assays enable measurement of cellular immune response for prognosis, therapy stratification, vaccine development, and clinical testing.


Subject(s)
Dengue Virus/immunology , Immunity, Cellular , Orthomyxoviridae/immunology , Respiratory Syncytial Virus, Human/immunology , Rotavirus/immunology , Viral Vaccines/therapeutic use , Virus Diseases/immunology , Yellow fever virus/immunology , Biomarkers/blood , Dengue/blood , Dengue/immunology , Dengue/prevention & control , Dengue/virology , Dengue Vaccines/therapeutic use , Dengue Virus/pathogenicity , Diagnosis, Differential , Host-Pathogen Interactions , Humans , Immunogenicity, Vaccine , Influenza Vaccines/therapeutic use , Influenza, Human/blood , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Oligonucleotide Array Sequence Analysis , Orthomyxoviridae/pathogenicity , Predictive Value of Tests , RNA, Messenger/blood , RNA, Messenger/genetics , Respiratory Syncytial Virus Infections/blood , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/pathogenicity , Rotavirus/pathogenicity , Rotavirus Infections/blood , Rotavirus Infections/immunology , Rotavirus Infections/prevention & control , Rotavirus Infections/virology , Rotavirus Vaccines , Signal Transduction/genetics , Virus Diseases/blood , Virus Diseases/prevention & control , Virus Diseases/virology , Yellow Fever/blood , Yellow Fever/immunology , Yellow Fever/prevention & control , Yellow Fever/virology , Yellow Fever Vaccine/therapeutic use , Yellow fever virus/pathogenicity
6.
J Med Virol ; 93(3): 1770-1775, 2021 03.
Article in English | MEDLINE | ID: covidwho-1196472

ABSTRACT

Herein, we report a case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and dengue coinfection, presented as a fatal stroke in our hospital, in São José do Rio Preto, São Paulo State, a Brazilian city hyperendemic for dengue viruses and other arthropod-borne viruses (arboviruses) and currently facing a surge of SARS-CoV-2 cases. This case is the first described in the literature and contributes to the better understanding of clinical presentations of two important diseases in a tropical setting.


Subject(s)
COVID-19/complications , Coinfection/complications , Dengue Virus/pathogenicity , Dengue/complications , SARS-CoV-2/pathogenicity , Stroke/etiology , Stroke/virology , Arboviruses/pathogenicity , Brazil , COVID-19/virology , Coinfection/virology , Dengue/virology , Female , Humans , Middle Aged
7.
Rev Med Virol ; 31(6): e2228, 2021 11.
Article in English | MEDLINE | ID: covidwho-1126517

ABSTRACT

Chloroquine (CQ) and hydroxychloroquine (HCQ) have been used as antiviral agents for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection. We performed a systematic review to examine whether prior clinical studies that compared the effects of CQ and HCQ to a control for the treatment of non-SARS-CoV2 infection supported the use of these agents in the present SARS-CoV2 outbreak. PubMed, EMBASE, Scopus and Web of Science (PROSPERO CRD42020183429) were searched from inception through 2 April 2020 without language restrictions. Of 1766 retrieved reports, 18 studies met our inclusion criteria, including 17 prospective controlled studies and one retrospective study. CQ or HCQ were compared to control for the treatment of infectious mononucleosis (EBV, n = 4), warts (human papillomavirus, n = 2), chronic HIV infection (n = 6), acute chikungunya infection (n = 1), acute dengue virus infection (n = 2), chronic HCV (n = 2), and as preventive measures for influenza infection (n = 1). Survival was not evaluated in any study. For HIV, the virus that was most investigated, while two early studies suggested HCQ reduced viral levels, four subsequent ones did not, and in two of these CQ or HCQ increased viral levels and reduced CD4 counts. Overall, three studies concluded CQ or HCQ were effective; four concluded further research was needed to assess the treatments' effectiveness; and 11 concluded that treatment was ineffective or potentially harmful. Prior controlled clinical trials with CQ and HCQ for non-SARS-CoV2 viral infections do not support these agents' use for the SARS-CoV2 outbreak.


Subject(s)
Chikungunya Fever/drug therapy , Chloroquine/therapeutic use , HIV Infections/drug therapy , Hepatitis C, Chronic/drug therapy , Hydroxychloroquine/therapeutic use , Infectious Mononucleosis/drug therapy , Severe Dengue/drug therapy , Warts/drug therapy , Alphapapillomavirus/drug effects , Alphapapillomavirus/immunology , Alphapapillomavirus/pathogenicity , Antiviral Agents/therapeutic use , COVID-19/virology , Chikungunya Fever/immunology , Chikungunya Fever/pathology , Chikungunya Fever/virology , Chikungunya virus/drug effects , Chikungunya virus/immunology , Chikungunya virus/pathogenicity , Dengue Virus/drug effects , Dengue Virus/immunology , Dengue Virus/pathogenicity , HIV/drug effects , HIV/immunology , HIV/pathogenicity , HIV Infections/immunology , HIV Infections/pathology , HIV Infections/virology , Hepacivirus/drug effects , Hepacivirus/immunology , Hepacivirus/pathogenicity , Hepatitis C, Chronic/immunology , Hepatitis C, Chronic/pathology , Hepatitis C, Chronic/virology , Herpesvirus 4, Human/drug effects , Herpesvirus 4, Human/immunology , Herpesvirus 4, Human/pathogenicity , Humans , Infectious Mononucleosis/immunology , Infectious Mononucleosis/pathology , Infectious Mononucleosis/virology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Severe Dengue/immunology , Severe Dengue/pathology , Severe Dengue/virology , Treatment Outcome , Warts/immunology , Warts/pathology , Warts/virology , COVID-19 Drug Treatment
8.
PLoS One ; 16(1): e0244937, 2021.
Article in English | MEDLINE | ID: covidwho-1013221

ABSTRACT

BACKGROUND: The impact of SARS-CoV-2 in regions endemic for both Dengue and Chikungunya is still not fully understood. Considering that symptoms/clinical features displayed during Dengue, Chikungunya and SARS-CoV-2 acute infections are similar, undiagnosed cases of SARS-CoV-2 in co-endemic areas may be more prevalent than expected. This study was conducted to assess the prevalence of covert cases of SARS-CoV-2 among samples from patients with clinical symptoms compatible with either Dengue or Chikungunya viral infection in the state of Espírito Santo, Brazil. METHODS: Presence of immunoglobulin G (IgG) antibody specific to SARS-CoV-2 nucleoprotein was detected using a chemiluminescent microparticle immunoassay in samples from 7,370 patients, without previous history of COVID-19 diagnosis, suspected of having either Dengue (n = 1,700) or Chikungunya (n = 7,349) from December 1st, 2019 to June 30th, 2020. FINDINGS: Covert cases of SARS-CoV-2 were detected in 210 (2.85%) out of the 7,370 serum samples tested. The earliest undiagnosed missed case of COVID-19 dated back to a sample collected on December 18, 2019, also positive for Dengue Virus. Cross-reactivity with either Dengue virus or other common coronaviruses were not observed. INTERPRETATION: Our findings demonstrate that concomitant Dengue or Chikungunya outbreaks may difficult the diagnosis of SARS-CoV-2 infections. To our knowledge, this is the first study to demonstrate, with a robust sample size (n = 7,370) and using highly specific and sensitive chemiluminescent microparticle immunoassay method, that covert SARS-CoV-2 infections are more frequent than previously expected in Dengue and Chikungunya hyperendemic regions. Moreover, our results suggest that SAR-CoV-2 cases were occurring prior to February, 2020, and that these undiagnosed missed cases may have contributed to the fast expansion of SARS-CoV-2 outbreak in Brazil. Data presented here demonstrate that in arboviral endemic regions, SARS-CoV-2 infection must be always considered, regardless of the existence of a previous positive diagnosis for Dengue or Chikungunya.


Subject(s)
COVID-19/epidemiology , Chikungunya Fever/epidemiology , Dengue/epidemiology , Adult , Antibodies, Viral/blood , Brazil/epidemiology , COVID-19/complications , Chikungunya virus/pathogenicity , Coinfection/epidemiology , Dengue Virus/pathogenicity , Diagnostic Errors/trends , Disease Outbreaks , Female , Humans , Immunoglobulin G/blood , Male , Middle Aged , Prevalence , SARS-CoV-2/pathogenicity
9.
Biomolecules ; 11(1)2020 12 24.
Article in English | MEDLINE | ID: covidwho-1000233

ABSTRACT

Phenolic compounds have been related to multiple biological activities, and the antiviral effect of these compounds has been demonstrated in several viral models of public health concern. In this review, we show the antiviral role of phenolic compounds against dengue virus (DENV), the most widespread arbovirus globally that, after its re-emergence, has caused multiple epidemic outbreaks, especially in the last two years. Twenty phenolic compounds with anti-DENV activity are discussed, including the multiple mechanisms of action, such as those directed against viral particles or viral proteins, host proteins or pathways related to the productive replication viral cycle and the spread of the infection.


Subject(s)
Antiviral Agents/therapeutic use , Dengue/drug therapy , Phenols/therapeutic use , Virus Replication/drug effects , Animals , Chlorocebus aethiops , Dengue/genetics , Dengue/pathology , Dengue/virology , Dengue Virus/drug effects , Dengue Virus/genetics , Dengue Virus/pathogenicity , Humans , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Vero Cells/drug effects , Viral Proteins/antagonists & inhibitors , Viral Proteins/genetics
10.
Rev Med Virol ; 31(2): e2161, 2021 03.
Article in English | MEDLINE | ID: covidwho-777660

ABSTRACT

The coronavirus disease 2019 (Covid-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an international public health crisis with devastating effects. In particular, this pandemic has further exacerbated the burden in tropical and subtropical regions of the world, where dengue fever, caused by dengue virus (DENV), is already endemic to the population. The similar clinical manifestations shared by Covid-19 and dengue fever have raised concerns, especially in dengue-endemic countries with limited resources, leading to diagnostic challenges. In addition, cross-reactivity of the immune responses in these infections is an emerging concern, as pre-existing DENV-antibodies might potentially affect Covid-19 through antibody-dependent enhancement. In this review article, we aimed to raise the issue of Covid-19 and dengue fever misdiagnosis, not only in a clinical setting but also with regards to cross-reactivity between SARS-CoV-2 and DENV antibodies. We also have discussed the potential consequences of overlapping immunological cascades between dengue and Covid-19 on disease severity and vaccine development.


Subject(s)
COVID-19/epidemiology , COVID-19/immunology , Dengue/epidemiology , Dengue/immunology , Animals , Antibodies, Viral/immunology , Antibody-Dependent Enhancement/immunology , Asia/epidemiology , COVID-19/virology , Coinfection/epidemiology , Coinfection/immunology , Coinfection/virology , Dengue/virology , Dengue Virus/immunology , Dengue Virus/pathogenicity , Humans , Pandemics/prevention & control , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity
11.
Int J Infect Dis ; 100: 483-489, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-753455

ABSTRACT

Antibody-dependent enhancement (ADE) exists in several kinds of virus. It has a negative influence on antibody therapy for viral infection. This effect was first identified in dengue virus and has since also been described for coronavirus. To date, the rapid spread of the newly emerged coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing coronavirus disease 2019 (COVID-19), has affected over 3.8 million people across the globe. The novel coronavirus poses a great challenge and has caused a wave of panic. In this review, antibody-dependent enhancements in dengue virus and two kinds of coronavirus are summarized. Possible solutions for the effects are reported. We also speculate that ADE may exist in SARS-CoV-2.


Subject(s)
Antibody-Dependent Enhancement , Betacoronavirus/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/virology , Dengue Virus/immunology , Dengue Virus/pathogenicity , Humans , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Viral Vaccines/immunology
12.
Nat Rev Immunol ; 20(10): 633-643, 2020 10.
Article in English | MEDLINE | ID: covidwho-711937

ABSTRACT

Antibody-dependent enhancement (ADE) is a mechanism by which the pathogenesis of certain viral infections is enhanced in the presence of sub-neutralizing or cross-reactive non-neutralizing antiviral antibodies. In vitro modelling of ADE has attributed enhanced pathogenesis to Fcγ receptor (FcγR)-mediated viral entry, rather than canonical viral receptor-mediated entry. However, the putative FcγR-dependent mechanisms of ADE overlap with the role of these receptors in mediating antiviral protection in various viral infections, necessitating a detailed understanding of how this diverse family of receptors functions in protection and pathogenesis. Here, we discuss the diversity of immune responses mediated upon FcγR engagement and review the available experimental evidence supporting the role of FcγRs in antiviral protection and pathogenesis through ADE. We explore FcγR engagement in the context of a range of different viral infections, including dengue virus and SARS-CoV, and consider ADE in the context of the ongoing SARS-CoV-2 pandemic.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antibodies, Viral/administration & dosage , Antibody-Dependent Enhancement/drug effects , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Leukocytes/drug effects , Pneumonia, Viral/drug therapy , Receptors, IgG/immunology , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/biosynthesis , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/adverse effects , Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/adverse effects , Antibodies, Viral/biosynthesis , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/virology , Dengue/drug therapy , Dengue/immunology , Dengue/virology , Dengue Virus/drug effects , Dengue Virus/immunology , Dengue Virus/pathogenicity , Gene Expression Regulation , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/immunology , Humans , Leukocytes/immunology , Leukocytes/virology , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Receptors, IgG/antagonists & inhibitors , Receptors, IgG/genetics , Severe acute respiratory syndrome-related coronavirus/drug effects , Severe acute respiratory syndrome-related coronavirus/immunology , Severe acute respiratory syndrome-related coronavirus/pathogenicity , SARS-CoV-2 , Severe Acute Respiratory Syndrome/drug therapy , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/virology , Signal Transduction , Virus Internalization/drug effects
13.
Emerg Microbes Infect ; 9(1): 1354-1355, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-382080

ABSTRACT

We report a 35-year-old female nurse who possibly received the SARS-CoV-2 virus during the blood sampling of a 35-year-old male patient initially suspected as a dengue infection. The patient had mild thrombocytopenia and positive dengue IgG and IgM whereas the clinicians were not aware of the possibility of false-positive dengue serology revealed in the published case report from Singapore. The nurse put on a pair of gloves but did not wear a mask during the only encounter with this patient. This nosocomial transmission raised a safety concern among healthcare professionals in an area with a relatively low Covid-19 prevalence, especially when the clinical and laboratory characteristics could be confused with other viral infections.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/transmission , Diagnostic Errors , Infectious Disease Transmission, Patient-to-Professional , Pneumonia, Viral/transmission , Adult , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Dengue/diagnosis , Dengue/virology , Dengue Virus/pathogenicity , Dengue Virus/physiology , Female , Humans , Male , Nurse Practitioners , Pandemics , Pneumonia, Viral/diagnosis , SARS-CoV-2 , Thailand
SELECTION OF CITATIONS
SEARCH DETAIL